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Optimal sample allocation in multivariate stratified
sampling: a comparison of deterministic and stochastic

optimization algorithms
Dalius Pumputis1

Abstract

This study addresses the problem of optimal sample allocation in multivariate stratified sam-
pling, where survey accuracy and cost-efficiency are the key concerns. Two optimization
formulations are examined: one aims to minimize the total survey cost subject to constraints
on the precision of the estimators of the population totals, while the other seeks to minimize
a weighted sum of the relative variances of these estimators, given a fixed total survey budget.
Classical and modern optimization approaches are reviewed and evaluated, including Inte-
ger Programming Algorithms (IPA), Bethel’s Algorithm (BA), Constrained Optimization by
Linear Approximations (COBYLA), and three stochastics, namely Generalized Simulated
Annealing Algorithm (GSAA), Particle Swarm Optimization (PSOA) and Biased Random-
Key Genetic Algorithm (BRKGA). Using synthetic and real-world populations, numerical
experiments demonstrate that IPA consistently achieves the global minimum and serves as
the benchmark. While BA underperforms, BRKGA emerges as a competitive alternative,
closely matching IPA in most scenarios. Results also highlight the impact of variable skew-
ness on allocation efficiency, with real-world datasets being more complex and thus having
higher sampling demands. The findings underscore the importance of adaptive, integer-
feasible optimization methods for accurate and cost-effective survey design.

Key words: constrained optimization by linear approximations, integer programming, mul-
tivariate stratified sampling, optimal sample allocation, stochastic optimization.

1. Introduction

To obtain accurate estimates, surveys often employ stratification of a finite population.
This statistical technique involves dividing the survey population into several distinct, non-
overlapping, and internally homogeneous groups known as strata. Independent samples are
then drawn from each of these groups. When stratified sampling is selected as the sampling
method, the initial task is to define the boundaries of the strata.

After the strata boundaries have been established and the total sample size n has been de-
cided, the next step involves allocating the sample size across the strata. Various allocation
strategies are available, such as equal, proportional, or Neyman allocation (Neyman 1934).
Equal and proportional methods are generally efficient when within-stratum variances are
similar. In contrast, the Neyman method is more appropriate when strata vary significantly,
as it prioritizes drawing fewer samples from more homogeneous strata and more from those
with greater internal variability.
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Neyman allocation relies on a formula designed to minimize both the survey cost C and
the variance of the estimator for a single study variable. However, modern surveys often
focus on multiple variables. In such cases, an allocation optimized for one variable may
not be optimal for others, resulting in what is known as the multivariate optimal sample
allocation problem.

This issue has been addressed by several researchers, beginning with Yates (1960), who
proposed minimizing a weighted sum of the variances of the estimates for all survey vari-
ables, under the constraint of a fixed total sample size. Later, Chatterjee (1967) extended this
line of inquiry by deriving an expression for the increase in variance when a non-optimal
allocation is used, offering a framework for quantifying the deviation from optimality in
multivariate settings.

Ahsan and Khan (1982) formulated the multivariate allocation problem with stratum-
level overhead costs as a nonlinear program, minimizing total cost subject to variance con-
straints. Bethel (1985) proposed a convex programming algorithm that is simple to imple-
ment and converges efficiently. He later extended this work (Bethel 1989) by incorporating
linear variance constraints and deriving optimal allocations using Lagrangian multipliers,
providing a practical algorithm with demonstrated convergence.

Subsequent work has focused on obtaining integer and compromise allocations. Khan
et al. (1998), Khan and Ahsan (2003), and Khan et al. (2010) developed dynamic and
goal programming methods to derive integer-valued, compromise solutions, incorporating
auxiliary information where available. Swain (2013) and Varshney et al. (2014) also applied
goal programming to balance efficiency and practicality in multivariate settings.

Kadane (2005) introduced a dynamic sampling plan that minimizes variance at every
stage, extending Neyman’s approach to sequential designs. Brito et al. (2015) proposed
a binary integer programming model that offers improved performance over existing algo-
rithms in complex survey scenarios.

Since study variable parameters are often unknown in advance, Dayal (1985) suggested
using auxiliary variables correlated with the variable of interest to guide sample allocation,
showing that proportional allocation based on such variables can outperform approxima-
tions of Neyman allocation. Reddy et al. (2018) used auxiliary data with dynamic program-
ming to optimize stratum boundaries and sample sizes in health surveys, greatly improving
estimation efficiency over traditional methods.

While many allocation methods rely on approximations or rounding to achieve prac-
tical sample sizes, these approaches may lead to suboptimal or even infeasible results.
Wright (2017) addressed these limitations by proposing exact optimal allocation algorithms
that avoid common issues with Neyman allocation, such as non-integer solutions, post-
rounding inefficiencies, and allocations exceeding stratum sizes. Expanding on this,
Wright (2020) developed an exact algorithm with cost and sample size bounds, using cost-
weighted function decomposition to offer a flexible, efficient framework that includes sev-
eral traditional methods as special cases.

Recent studies propose methodological advances for optimum and compromise alloca-
tion in multivariate stratified sampling, tackling issues like non-response, cost, uncertainty,
fuzzy environments, and practical constraints.
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Haq et al. (2020) tackled compromise allocation in multivariate stratified sampling un-
der non-response and fixed costs by converting an integer non-linear problem into a binary
goal programming model, solved with flexible fuzzy goals for population mean estimation.
Mahfouz et al. (2023) proposed a stochastic compromise allocation model using multi-
objective programming to minimize survey cost and stratum variances. Through chance-
constrained programming and simulations, they showed it provides the most efficient allo-
cations. Raghav et al. (2023) addressed compromise allocation under response and non-
response using multi-objective intuitionistic fuzzy programming with optimistic and pes-
simistic strategies, demonstrating applicability through simulations in wildlife, agriculture,
and marketing surveys. Jalil et al. (2023) proposed a hierarchical multi-level program-
ming model for compromise allocation under non-response and budget constraints, using
fuzzy methods to optimize allocations and improve survey efficiency, flexibility, and cost-
effectiveness. Gupta et al. (2024) modeled compromise allocation as deterministic integer
programming solved with intuitionistic fuzzy programming, showing via computations that
it reduces variances and errors, improving precision in microeconomic surveys. Wesołowski
et al. (2024) developed a recursive Neyman algorithm (RNABOX) for stratum sample sizes
under box constraints, proving optimality with Karush-Kuhn-Tucker theory and implement-
ing it in R as a generalization of classical Neyman allocation.

To obtain optimal or near-optimal solutions for multivariate sample allocation problems,
general-purpose optimization techniques such as the Generalized Simulated Annealing Al-
gorithm (Tsallis, 1996) and other metaheuristic methods can be applied, as demonstrated in
this study.

Unlike prior work (e.g. Mahfouz et al., 2023) that developed specific stochastic models,
our study introduces a broader comparison of stochastic, deterministic, and hybrid optimiza-
tion algorithms under two canonical allocation formulations. We benchmark results against
a globally optimal integer programming solution and apply the methods to both synthetic
and real populations, including high-dimensional, skewed, and correlated data, providing
new insights into practical performance under diverse conditions.

The structure of the paper is as follows. Section 2 outlines fundamental concepts and
definitions related to stratified sampling and introduces two multivariate sample allocation
problems along with relevant algorithms. Section 3 presents simulation results illustrat-
ing the performance of different allocation methods. Lastly, Section 4 offers concluding
remarks.

2. Formulations and algorithms for sample allocation

Consider a finite population denoted by U = {u1,u2, . . . ,uN}, consisting of N distinct
units. Assume there are m study variables y(1),y(2), . . . ,y(m), each defined over the popu-
lation U and taking real values. For each variable y( j), the corresponding values for all
population units are given by y( j)

1 ,y( j)
2 , . . . ,y( j)

N , where j = 1,2, . . . ,m.
Now, suppose the population is partitioned into H non-overlapping and exhaustive strata,

denoted by U1,U2, . . . ,UH , such that:

U =
H⋃

h=1

Uh,
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with each stratum Uh containing Nh units, for h = 1,2, . . . ,H. From each stratum, a simple
random sample sh ⊂ Uh of size nh is selected without replacement. The overall sample s,
the total population size N, and the total sample size n satisfy the following relationships:

s =
H⋃

h=1

sh, N =
H

∑
h=1

Nh, n =
H

∑
h=1

nh.

The quantities of interest are the finite population totals for each variable:

t j =
N

∑
i=1

y( j)
i , j = 1,2, . . . ,m.

These totals, t1, t2, . . . , tm, can be estimated using the Horvitz-Thompson estimator
(Horvitz and Thompson 1952):

t̂ j =
H

∑
h=1

Nh

nh

nh

∑
i=1

y( j)
hi , j = 1,2, . . . ,m,

where y( j)
hi denotes the i-th observed value of variable y( j) in the sample sh from stratum Uh.

The variance of the estimator t̂ j for each j = 1,2, . . . ,m is given by:

V (t̂ j) =
H

∑
h=1

N2
h

(
1− nh

Nh

) s2
h j

nh
, (1)

where s2
h j denotes the variance of variable y( j) within stratum Uh.

Because the variance (1) of the estimators is determined solely by the sample sizes
chosen for each stratum – given that the number of strata (H), population sizes within strata
(Nh), and within-stratum variances (s2

h j for h = 1,2, . . . ,H and j = 1,2, . . . ,m) are fixed
once the stratification is set – the level of variance can be managed through the appropriate
selection of sample sizes n1,n2, . . . ,nH . Consequently, decreasing these sample sizes leads
to higher variance and a greater coefficient of variation in the total estimates, which in turn
can reduce the accuracy of the results. Nonetheless, to limit the total survey cost, expressed
as ∑

H
h=1 chnh, where ch is the per-unit cost of sampling in stratum Uh, it is often necessary to

reduce sample sizes. To address this trade-off, various sample allocation strategies – such as
those developed by Kokan and Khan (1967), Bethel (1985, 1989), Ahsan and Khan (1982),
Brito et al. (2015), among others – have been proposed to balance the need for precision in
the survey variables of interest with cost efficiency.

Kish, L., (1976), Khan and Ahsan (2003), Garciá and Cortez (2006), Khan et al. (2011),
and others have addressed the problem of optimal allocation in multivariate stratified sam-
pling, focusing on optimizing allocation strategies with respect to the variances of estima-
tors, under constraints such as total sample size or cost. Their work involves various mathe-
matical programming approaches – including nonlinear, dynamic, and convex optimization
– to balance precision and resource limitations in survey design.
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The contributions discussed above allow us to distinguish two main directions in ap-
proaching the sample allocation problem. These perspectives form the basis for the two
problem formulations presented below.

Problem 1. Find strata sample sizes n1,n2, . . . ,nH , which minimize the total survey cost

C =
H

∑
h=1

chnh (2)

and satisfy the following inequalities:

nmin ≤ nh ≤ Nh (h = 1, . . . ,H), (3)√
V (t̂ j)

t j
≤CVj ( j = 1, . . . ,m), (4)

where CVj, for j = 1,2, . . . ,m, are the pre-specified coefficients of variation of the estimators
t̂ j, j = 1,2, . . . ,m.

In this formulation, constraint (3) ensures that each stratum receives a sample size be-
tween nmin and its population size. Constraint (4) keeps the coefficient of variation of each
estimator within the target CVj.

Problem 2. Find strata sample sizes n1,n2, . . . ,nH that minimize the weighted sum of
the relative variances of the estimators of totals

m

∑
j=1

w j
1
t2

j

H

∑
h=1

s2
h j

N2
h

nh

(
1− nh

Nh

)
(5)

and satisfy the following inequalities:

nmin ≤ nh ≤ Nh (h = 1, . . . ,H), (6)
H

∑
h=1

chnh ≤C∗, (7)

where C∗ is the total cost, defined as a function of the available survey budget. The weights
w j, for j = 1,2, . . . ,m, are predetermined values associated with the importance of each
variable of interest, such that 0 < w j < 1 and w1 +w2 + . . .+wm = 1.

The constraint in (6) is identical to that in (3), while the constraint in (7) ensures that the
total cost is less than or equal to C∗, which is defined based on the available survey budget.

Bethel’s Algorithm (BA). Bethel (1985, 1989) solved Problem 1 without incorporat-
ing constraint (3), and developed an algorithm that is guaranteed to converge to a solution
(when one exists). This was achieved by applying the Kuhn and Tucker (1951) Theorem
and the method of Lagrange multipliers to tackle the optimization problem. Later, some
implementations – such as the bethel() function in the SamplingStrata package for the
R programming language – modified the algorithm to incorporate constraint (3).

In this work, we also employ the Generalized Simulated Annealing Algorithm (GSAA)
introduced by Tsallis and Stariolo (1996), designed for global optimization of real-valued
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functions C(n) : RH → R, where C(n), in the context of our paper, corresponds to the sur-
vey cost function or a weighted sum of the relative variances of the estimators of totals, and
n = (n1,n2, . . . ,nH). While originally formulated for unconstrained problems, GSAA can
be extended to constrained settings by incorporating penalty terms into the objective or by
applying constraint-preserving sampling strategies.

The algorithm is based on a generalized entropy functional from nonextensive statistical
mechanics:

Sq = k
1−∑i pq

i
q−1

, q ∈ R,

which reduces to the Shannon (1948) entropy as q → 1. Here, {pi} denotes the probabil-
ities of the microscopic configurations, and k is a conventional positive constant. The two
main parameters of GSAA are qV and qA, which control the sampling distribution and the
acceptance probability, respectively.

Candidate moves are generated using a power-law visiting distribution gqV (∆nt), con-
trolled by the parameter qV , and the annealing temperature T (V )

qV (t) at iteration t.
The acceptance of uphill moves is governed by a generalized Metropolis rule:

PqA(nt → nt+1) =


1 if C(nt+1)<C(nt),(

1+(qA −1)
C(nt+1)−C(nt)

T (A)
qA (t)

) 1
1−qA

otherwise,

where T (A)
qA (t) is the acceptance temperature at iteration t.

The temperature follows a generalized cooling schedule:

T (V )
qV (t) = TqV (1)

2qV−1 −1
(1+ t)qV−1 −1

,

ensuring slow enough cooling to maintain ergodicity and eventual convergence to the global
minimum.

Thus, at each iteration t, a candidate solution nt+1 is proposed by drawing a displace-
ment ∆nt from the visiting distribution gqV (∆nt) centered at the current solution nt . The
candidate is accepted with probability PqA(nt → nt+1), and the relevant temperatures are
updated according to their respective cooling schedules. The process repeats until conver-
gence criteria are met, typically when the energy stabilizes or the maximum number of
iterations is reached.

For constrained problems, the objective may be modified as C∗(n)=C(n)+a ·Penalty(n),
where a > 0 controls the penalty strength.

Thus, GSAA offers a powerful and flexible global optimization method, especially suit-
able for complex landscapes and adaptable to both unconstrained and constrained scenarios.

In derivative-free optimization with nonlinear constraints, Powell (1994) introduced
Constrained Optimization by Linear Approximations (COBYLA). The method builds
local linear models of the objective C(n) : RH → R and constraints Gi(n) : RH → R, i =
1, . . . ,r, by interpolating their values at the vertices of a non-degenerate H-simplex. From
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a simplex {x(0),x(1), . . . ,x(H)} ⊂ RH with full affine span, linear approximations C̃(n) and
G̃i(n) are constructed to match the true functions at each vertex.

At each iteration, COBYLA solves a linear subproblem

min
n∈RH

C̃(n)

subject to G̃i(n)≥ 0, i = 1, . . . ,r,

∥nt+1 −nt∥2 ≤ ∆t ,

where nt is the current best vertex (minimizing a merit function) and ∆t > 0 is the trust-
region radius. The radius is reduced if sufficient merit decrease is not achieved, regardless
of simplex geometry.

The merit function used to compare candidate points is defined as

Φ(n) =C(n)+µ · max
1≤i≤r

[−Gi(n)]+ ,

with penalty parameter µ > 0 dynamically updated to balance objective and constraint sat-
isfaction. If the linearized subproblem is infeasible, COBYLA minimizes maximum con-
straint violation under the trust region. The simplex is then updated either by incorporating
a new feasible point or by improving the interpolation geometry.

Although theoretical convergence guarantees are limited, COBYLA performs well in
practice for low-dimensional problems without reliable derivatives, making it useful for
black-box or noisy applications in engineering and science.

Consider the optimization of a real-valued objective function C(n) : RH → R, defined
over a bounded search domain Ω ⊂ RH , where the goal is to find n∗ ∈ Ω such that C(n∗) =

minn∈Ω C(n). To solve this, we use the Particle Swarm Optimization Algorithm (PSOA)
(Kennedy and Eberhart 1995), which models a swarm of particles sharing positional infor-
mation to locate the global minimum. Each particle i has a position ni,t ∈ Ω, velocity vi,t ,
personal best position pi,t , and neighborhood best position li,t . Velocities evolve as

vi,t+1 = F(vi,t ,pi,t −ni,t ,Ii,t −ni,t),

and positions update iteratively by

ni,t+1 = ni,t +vi,t+1,

with C(ni,t) guiding updates of pi,t and li,t .
To ensure convergence, Clerc and Kennedy (2002) introduced a constriction factor χ ,

yielding the standard PSOA update:

vi,t+1 = χ (vi,t +α1βββ 1(pi,t −ni,t)+α2βββ 2(li,t −ni,t)) ,

where α1,α2 are acceleration coefficients, and βββ 1,βββ 2 are vectors of independent random
samples drawn from the uniform distribution U(0,1). Clerc (2012) later formalized Stan-
dard PSOA versions with reproducibility, rigorous topologies, and boundary handling.



8 D. Pumputis: Optimal sample allocation in multivariate stratified sampling...

Further developments include the phasor PSOA (PPSOA) (Ghasemi et al. 2018), which
uses trigonometric phase-based updates for parameter-free adaptivity, and the multi-phase
PSOA (Li et al. 2021), which segments optimization into phases with distinct strategies for
improved performance.

For constrained optimization, modified PSOA methods incorporate strategies such as
penalty functions, feasibility rules, and repair operators to enforce constraints while pre-
serving swarm behavior (Rini et al. 2011).

PSOA has broad applicability. In statistical sampling, it optimizes stratum boundaries to
minimize estimator variance under Neyman allocation (Al-Kassab and Ali 2015). In power
systems, it is widely used for economic dispatch, optimal power flow, and reactive power
control (del Valle et al. 2008). Numerous enhancements – such as inertia weight schedules,
topology control, and hybridization with mutation operators – have been surveyed by Imran
et al. (2013), underscoring the algorithm’s adaptability and continued development.

In all cases, the central aim remains to iteratively improve candidate solutions ni,t such
that C(ni,t) approaches the global minimum, exploiting both individual and collective expe-
rience within the swarm framework.

In this study, we utilize the Biased Random-Key Genetic Algorithm (BRKGA)
(Gonçalves and Resende 2011), an extension of the original Random-Key Genetic Algo-
rithm (RKGA) proposed by Bean (1994), which can be applied to optimize a real-valued
objective function C(n) : RH → R. In the RKGA, candidate solutions are encoded as chro-
mosomes – vectors of real numbers drawn from the interval [0,1] – which are decoded into
feasible solutions using a problem-specific mapping. This indirect encoding offers flexibil-
ity and is well-suited for combinatorial optimization problems.

The BRKGA, as applied by Brito et al. (2022), modifies the standard RKGA by in-
troducing biased selection during crossover. In each generation, a population of N∗ chro-
mosomes is divided into an elite set (best-performing solutions), a non-elite set, and a set
of mutant chromosomes randomly generated to preserve diversity. Crossover is performed
between pairs where one parent is always selected from the elite set and the other from
the non-elite set. A uniformly random auxiliary vector vaux ∈ [0,1]H and a predefined bias
parameter δe > 0.5 guide gene inheritance: if vaux,i ≤ δe, the offspring gene at position i is
inherited from the elite parent; otherwise, from the non-elite.

Each chromosome γγγ = (γ1, . . . ,γH), where H is the number of strata, is decoded into
a vector ν = (n1, . . . ,nH) of sample sizes via a decoder. For the formulation that minimizes
the total survey cost under precision constraints (Problem 1), assuming unit costs ch = 1 for
all strata, h = 1, . . . ,H, the decoding is given by:

nh = nmin + round(γh · (Nh −nmin)) ,

ensuring that nh ∈ [nmin,Nh], h = 1, . . . ,H. For the formulation that minimizes a weighted
sum of relative variances under a fixed total survey cost (Problem 2) – which reduces to the
total sample size n when ch = 1 for all h = 1, . . . ,H – the decoding follows:

nh = nmin +

(
(n−Hnmin) ·

γh

∑
H
k=1 γk

)
for h = 1, . . . ,H −1, nH = n−

H−1

∑
h=1

nh.
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After decoding, each solution is evaluated using the objective function. To enforce
feasibility, a penalty term is added if any constraint is violated. For instance, in Problem 1,
the penalized objective becomes:

Cp =
H

∑
h=1

nh +P,

where P=T M , T ∈R, if any CV (t̂( j)
y )>CVj, and zero otherwise. Here, M =max j

{
CV (t̂( j)

y )
CV j

}
.

This procedure ensures that only feasible or near-feasible solutions persist across gen-
erations. The BRKGA evolves the population by keeping elites, adding mutants, and
producing biased offspring, balancing exploration and exploitation. As shown by Brito
et al. (2022), it yields high-quality integer-feasible solutions under nonlinear constraints,
rivaling exact integer programming methods.

Most approaches used to derive optimal sample sizes face challenges related to round-
ing, which can be particularly problematic in certain scenarios. These include: (1) surveys
involving small areas, where adding or removing even a single unit from the sample can no-
tably affect the variance estimates, and (2) surveys with a very high number of strata, where
the total sample size n may differ considerably from the sum of the individually rounded
sample sizes allocated to each stratum.

To address these issues, Brito et al. (2015) proposed Integer Programming Algo-
rithms (IPA) to solve Problems 1 and 2, with the following additional constraint imposed:
nh ∈ Z+, for h = 1, . . . ,H. They used simple algebraic techniques to achieve linearity either
in the objective function or in the constraints. Specifically, Brito et al. (2015) introduced
a new binary variable z defined as:

zhk =

{
1, if the sample size k ∈ {nmin, . . . ,Nh},h = 1, . . . ,H, is allocated to stratum Uh;
0, otherwise.

Through this variable, the second constraint in Problem 1 – which is originally nonlinear
– can be reformulated as a linear expression in terms of the values of the binary variable z:

H

∑
h=1

Nh ph j

Nh

∑
k=nmin

zhk

k
−

H

∑
h=1

ph j ≤ 1, ph j =
Nhs2

h j

t2
j CV 2

j
, j = 1,2, . . . ,m.

Similarly, the nonlinear objective function in Problem 2 can be reformulated as a linear
expression in terms of the binary variable z:

m

∑
j=1

w j
1
t2

j

H

∑
h=1

(
Nh

∑
k=nmin

zhk

k

)
N2

h s2
h j.

Although not shown here, the remaining constraints in Problems 1 and 2, as well as the
linear objective function in Problem 1, are also reformulated in terms of the binary variable
z, resulting in fully linear expressions.
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After achieving linearity either in the objective function or in the constraints, Brito et
al. (2015) solved the resulting integer programming problems using the Branch and Bound
method (Wolsey 1998). This optimization approach guarantees attainment of the global
minimum.

3. Numerical comparisons

This section presents the findings from a comparison of various multivariate optimal
allocation techniques applied to a specific subset of population datasets. All computations
were performed using the R programming language. The evaluation focuses on several al-
gorithms employed to solve Problem 1, including Integer Programming (IPA) (Brito et al.
2015a), Bethel’s Algorithm (BA) (Bethel 1985, 1989), the Generalized Simulated Anneal-
ing Algorithm (GSAA) (Tsallis and Stariolo 1996), Constrained Optimization by Linear
Approximations (COBYLA) (Powell 1994), Particle Swarm Optimization (PSO) (Kennedy
and Eberhart 1995), and the Biased Random Key Genetic Algorithm (BRKGA) (Gonçalves
and Resende 2011; Brito et al. 2022). The IPA, GSAA, COBYLA, PSOA, and BRKGA
algorithms are also applied to solve Problem 2, along with the textbook method given in
Cochran (1977), which is denoted as TBA. Specifically, according to this method, the opti-
mal sample size nh from stratum Uh is calculated using the following formula:

nh = n

√
∑

m
j=1
(
n(N)

h j

)2

∑
H
h=1

√
∑

m
j=1
(
n(N)

h j

)2
,

where n(N)
h j denotes the optimum sample size in stratum Uh for variable j, calculated ac-

cording to the Neyman (1934) allocation.
Initially, the comparisons are performed on two synthetic populations, each contain-

ing N = 10000 units. In each population, four study variables are specified. To establish
a predetermined dependence structure among them, a Gaussian copula is first constructed.
This copula serves as a probability distribution where each of the four random variables has
a uniform marginal distribution. Next, these uniformly distributed variables are converted
into the target distributions by applying the inverse transform method.

Thus, for Population 1, the variables are simulated from asymmetric distributions: y(1) ∼
E (0.005), y(2) = |y|, where y ∼ t(3), y(3) ∼ Γ(1,2), y(4) ∼ χ2(2), with ρ(y(1),y(2)) =
0.13, ρ(y(1),y(3)) = 0.39, ρ(y(1),y(4)) = −0.31, ρ(y(2),y(3)) = 0.12, ρ(y(2),y(4)) = 0.13,
ρ(y(3),y(4)) = 0.30.

Population 2 consists of study variables following a combination of normal, expo-
nential, and Fisher distributions: y(1) ∼ E (0.005), y(2) ∼ N (3000,300), y(3) ∼ F (5,4),
and y(4) ∼ N (100,20). Here, the second parameter in the normal distributions repre-
sents the standard deviation. The correlations between these variables are given as fol-
lows: ρ(y(1),y(2)) = 0.19, ρ(y(1),y(3)) = 0.13, ρ(y(1),y(4)) = 0.27, ρ(y(2),y(3)) = 0.12,
ρ(y(2),y(4)) = 0.20, ρ(y(3),y(4)) = 0.17.

For extended analysis, Population 3 is introduced, originating from a statistical survey
on the area and yield of agricultural plants in Lithuanian agricultural companies and en-
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terprises, with a total population size of N = 6204. To assess different sample allocation
methods, the following four skewed variables are selected: y(1) - total yield of cereals and
oilseed rape, y(2) - total yield of cereals and oilseed rape after cleaning and drying, y(3) - to-
tal area of cereals and oilseed rape, and y(4) - total harvested area of cereals and oilseed rape.
The relationships between these variables are characterized by the following correlation co-
efficients: ρ(y(1),y(2)) = 0.64, ρ(y(1),y(3)) = 0.66, ρ(y(1),y(4)) = 0.71, ρ(y(2),y(3)) = 0.86,
ρ(y(2),y(4)) = 0.87, ρ(y(3),y(4)) = 0.93.

All populations are stratified using the traditional k-means approach implemented in
the stats package in R (R Core Team 2023). The number of strata, H, along with their
respective sizes, N1,N2, . . . ,NH , are detailed in Table 1.

Table 1. Population strata sizes and number of strata

Population Number of strata (H) Strata sizes (N1,N2, . . . ,NH )

1 10 1024, 531, 501, 1253, 1761, 649, 1616, 1211, 731, 723

2 7 1083, 831, 245, 1397, 2719, 1123, 2602

3 6 680, 438, 557, 695, 2596, 1238

For the numerical analysis conducted in each population, unit survey costs are assumed
to be the same across all strata, and the weights w j, for j = 1,2, . . . ,m, are considered equal
for all survey variables. A minimum sample size per stratum of nmin = 2 is maintained
for all methods and populations examined. The predefined coefficients of variation for the
total estimators in Problem 1 are set at 5%, 10%, and 15%. In Problem 2, the total sample
sizes for allocation are determined based on sampling fractions of 5%, 10%, and 20% of the
respective population sizes (N).

The algorithms are implemented using their respective R packages, with specific pa-
rameter configurations as detailed below. The Integer Programming Algorithms (IPA) em-
ploy the functions BSSM_FC() and BSSM_FD() from the MultAlloc package (Brito et al.
2015b) to solve Problem 1 and Problem 2, respectively. Bethel’s Algorithm (BA) is ex-
ecuted via the bethel() function from the SamplingStrata package (Barcaroli 2014),
where precision constraints are defined in terms of coefficients of variation for each stud-
ied variable. The textbook method (TBA) is developed by us using the R programming
language. For the generalized simulated annealing algorithm (GSAA), the GenSA() func-
tion from the GenSA package (Xiang et al. 2013) is used, with the parameters set as
follows: temperature = 1 000, parameter for visiting distribution = 2.63,
and parameter for acceptance distribution = -12. Constrained Optimization by
Linear Approximations (COBYLA) employs the nloptr() function from the nloptr pack-
age, with the algorithm parameter assigned the value NLOPT_LN_COBYLA. Particle Swarm
Optimization (PSO) is carried out using the psoptim() function from the pso package
(Bendtsen 2022), where the swarm size is configured as 300. By default, this algorithm
adheres to the Standard PSOA 2007 framework established by Clerc (2012). Lastly, the
Biased Random Key Genetic Algorithm (BRKGA) is executed using the brkga() function
from the BRKGA package (Brito et al. 2023), with the following parameter settings: size of

the algorithm population = 2 000, percentage of elite chromosomes = 0.2,
percentage of mutant chromosomes = 0.2, crossover probability = 0.6,
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number of generations = 2 000, and penalty factor = 1 000. Any other hyperpa-
rameters that are not explicitly stated remain at their default values. The R code defining
the objective function and constraints for GSAA, COBYLA, PSOA, and BRKGA is created
externally from their respective function environments.

Table 2. Comparison of Algorithms for Population 1 and Problem 1

Alg.: IPA BA GSAA CBLA PSOA BRKGA

CVj = 5%

∑ni 457 462 458 460 460 457
f (in %) 4.570 4.620 4.580 4.600 4.600 4.570
CV (t̂(1)y ) 3.408 3.386 3.389 3.389 3.418 3.401
CV (t̂(2)y ) 4.996 4.967 4.999 4.978 4.997 4.999
CV (t̂(3)y ) 4.550 4.522 4.519 4.537 4.582 4.581
CV (t̂(4)y ) 4.485 4.459 4.479 4.472 4.504 4.492

CVj = 10%

∑ni 119 124 119 119 120 120
f (in %) 1.190 1.240 1.190 1.190 1.200 1.200
CV (t̂(1)y ) 6.809 6.695 6.778 6.809 6.985 6.702

Alg.: IPA BA GSAA CBLA PSOA BRKGA

CV (t̂(2)y ) 9.983 9.777 9.999 9.983 9.998 9.980

CV (t̂(3)y ) 9.047 8.896 9.049 9.047 9.185 8.953

CV (t̂(4)y ) 8.948 8.750 8.948 8.948 8.921 8.959

CVj = 15%

∑ni 54 59 54 54 54 54
f (in %) 0.540 0.590 0.540 0.540 0.540 0.540

CV (t̂(1)y ) 10.313 9.786 10.214 10.306 10.214 10.070

CV (t̂(2)y ) 14.937 14.269 14.974 14.889 14.968 14.987

CV (t̂(3)y ) 13.636 12.831 13.520 13.576 13.432 13.495

CV (t̂(4)y ) 13.418 12.750 13.388 13.276 13.353 13.447

Table 3. Comparison of Algorithms for Population 2 and Problem 1

Alg.: IPA BA GSAA CBLA PSOA BRKGA

CVj = 5%

∑ni 773 776 773 774 774 773
f (in %) 7.730 7.760 7.730 7.740 7.740 7.730
CV (t̂(1)y ) 2.497 2.473 2.459 2.495 2.455 2.478
CV (t̂(2)y ) 0.192 0.190 0.189 0.192 0.189 0.190
CV (t̂(3)y ) 4.998 4.982 4.999 4.992 4.995 5.000
CV (t̂(4)y ) 1.002 0.994 0.995 1.001 0.983 0.995

CVj = 10%

∑ni 305 308 305 306 306 305
f (in %) 3.050 3.080 3.050 3.060 3.060 3.050
CV (t̂(1)y ) 4.266 4.140 4.166 4.264 4.144 4.127

Alg.: IPA BA GSAA CBLA PSOA BRKGA

CV (t̂(2)y ) 0.328 0.318 0.319 0.328 0.318 0.317

CV (t̂(3)y ) 9.988 9.928 9.999 9.967 9.997 9.999

CV (t̂(4)y ) 1.710 1.665 1.681 1.709 1.648 1.655

CVj = 15%

∑ni 153 156 153 155 153 154

f (in %) 1.530 1.560 1.530 1.550 1.530 1.540

CV (t̂(1)y ) 6.042 5.714 5.773 6.038 5.903 5.702

CV (t̂(2)y ) 0.465 0.438 0.442 0.464 0.451 0.436

CV (t̂(3)y ) 14.976 14.823 14.993 14.868 14.998 14.993

CV (t̂(4)y ) 2.419 2.301 2.347 2.418 2.402 2.303

Table 4. Comparison of Algorithms for Population 3 and Problem 1

Alg.: IPA BA GSAA CBLA PSOA BRKGA

CVj = 5%

∑ni 745 747 745 747 745 745
f (in %) 12.008 12.041 12.008 12.041 12.008 12.008
CV (t̂(1)y ) 4.996 4.987 4.999 4.987 4.998 5.000
CV (t̂(2)y ) 3.758 3.748 3.771 3.754 3.817 3.735
CV (t̂(3)y ) 4.242 4.238 4.293 4.240 4.400 4.077
CV (t̂(4)y ) 3.521 3.516 3.579 3.519 3.649 3.427

CVj = 10%

∑ni 229 231 229 229 229 229
f (in %) 3.691 3.723 3.691 3.691 3.691 3.691
CV (t̂(1)y ) 9.984 9.936 10.000 9.976 9.995 9.982

Alg.: IPA BA GSAA CBLA PSOA BRKGA

CV (t̂(2)y ) 7.390 7.271 7.337 7.407 7.587 7.309

CV (t̂(3)y ) 7.455 7.592 7.605 7.821 8.443 7.790

CV (t̂(4)y ) 6.421 6.351 6.376 6.618 6.997 6.575

CVj = 15%

∑ni 107 110 107 107 107 107
f (in %) 1.725 1.773 1.725 1.725 1.725 1.725

CV (t̂(1)y ) 14.953 14.735 14.989 14.953 14.982 14.992

CV (t̂(2)y ) 10.795 10.649 10.825 10.795 10.848 10.824

CV (t̂(3)y ) 10.858 10.797 10.908 10.858 10.874 10.001

CV (t̂(4)y ) 9.100 9.028 9.130 9.100 9.121 8.656
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Table 5. Comparison of Algorithms for Population 1 and Problem 2

Alg.: IPA TBA GSAA CBLA PSOA BRKGA

n = 500, f = 5%

CV (t̂(1)y ) 3.228 3.603 3.247 3.238 3.205 3.238
CV (t̂(2)y ) 4.787 5.281 4.788 4.789 4.806 4.789
CV (t̂(3)y ) 4.255 4.581 4.272 4.254 4.292 4.254
CV (t̂(4)y ) 4.275 4.532 4.250 4.266 4.318 4.266

∑CV (t̂(i)y ) 16.545 17.997 16.557 16.547 16.621 16.547

n = 1000, f = 10%

CV (t̂(1)y ) 2.206 2.479 2.212 2.214 2.211 2.209
CV (t̂(2)y ) 3.287 3.635 3.290 3.290 3.287 3.287
CV (t̂(3)y ) 2.933 3.164 2.944 2.933 2.929 2.929

Alg.: IPA TBA GSAA CBLA PSOA BRKGA

CV (t̂(4)y ) 2.940 3.122 2.931 2.942 2.940 2.941

∑CV (t̂(i)y ) 11.366 12.400 11.377 11.379 11.367 11.366

n = 2000, f = 20%

CV (t̂(1)y ) 1.455 1.654 1.465 1.453 1.453 1.453

CV (t̂(2)y ) 2.179 2.437 2.184 2.177 2.177 2.178

CV (t̂(3)y ) 1.950 2.124 1.970 1.954 1.954 1.953

CV (t̂(4)y ) 1.961 2.096 1.957 1.961 1.961 1.961

∑CV (t̂(i)y ) 7.545 8.311 7.576 7.545 7.545 7.545

Table 6. Comparison of Algorithms for Population 2 and Problem 2

Alg.: IPA TBA GSAA CBLA PSOA BRKGA

n = 500, f = 5%

CV (t̂(1)y ) 2.919 2.362 2.926 2.726 2.920 2.914
CV (t̂(2)y ) 0.222 0.187 0.223 0.208 0.223 0.222
CV (t̂(3)y ) 7.199 21.043 7.198 7.499 7.198 7.201
CV (t̂(4)y ) 1.189 0.859 1.190 1.113 1.189 1.194

∑CV (t̂(i)y ) 11.529 24.451 11.537 11.546 11.530 11.531

n = 1000, f = 10%

CV (t̂(1)y ) 1.847 1.627 1.859 1.854 1.854 1.847
CV (t̂(2)y ) 0.140 0.129 0.142 0.141 0.141 0.141
CV (t̂(3)y ) 4.142 14.438 4.136 4.137 4.137 4.141

Alg.: IPA TBA GSAA CBLA PSOA BRKGA

CV (t̂(4)y ) 0.755 0.591 0.759 0.758 0.758 0.755

∑CV (t̂(i)y ) 6.884 16.785 6.896 6.890 6.890 6.884

n = 2000, f = 20%

CV (t̂(1)y ) 1.155 1.093 1.184 1.162 1.162 1.161

CV (t̂(2)y ) 0.087 0.087 0.090 0.088 0.088 0.088

CV (t̂(3)y ) 2.463 9.475 2.453 2.458 2.458 2.458

CV (t̂(4)y ) 0.472 0.396 0.480 0.476 0.476 0.475

∑CV (t̂(i)y ) 4.177 11.051 4.207 4.184 4.184 4.182

Table 7. Comparison of Algorithms for Population 3 and Problem 2

Alg.: IPA TBA GSAA CBLA PSOA BRKGA

n = 310, f = 5%

CV (t̂(1)y ) 8.825 9.895 8.881 8.844 8.825 8.825
CV (t̂(2)y ) 5.843 7.218 5.852 5.827 5.843 5.843
CV (t̂(3)y ) 4.963 5.225 4.937 4.984 4.963 4.963
CV (t̂(4)y ) 4.392 4.966 4.359 4.409 4.392 4.392

∑CV (t̂(i)y ) 24.023 27.304 24.029 24.064 24.023 24.023
n = 620, f = 10%

CV (t̂(1)y ) 5.906 6.697 5.905 5.940 5.930 5.904
CV (t̂(2)y ) 3.888 4.896 3.884 3.948 3.901 3.889
CV (t̂(3)y ) 3.376 3.556 3.382 3.363 3.359 3.377

Alg.: IPA TBA GSAA CBLA PSOA BRKGA

CV (t̂(4)y ) 2.970 3.379 2.976 2.976 2.950 2.971

∑CV (t̂(i)y ) 16.140 18.528 16.147 16.227 16.140 16.141

n = 1241, f = 20%

CV (t̂(1)y ) 3.657 4.292 3.638 3.657 3.657 3.657

CV (t̂(2)y ) 2.377 3.182 2.392 2.378 2.378 2.378

CV (t̂(3)y ) 2.177 2.323 2.189 2.177 2.177 2.177

CV (t̂(4)y ) 1.886 2.209 1.895 1.886 1.886 1.886

∑CV (t̂(i)y ) 10.097 12.006 10.114 10.098 10.098 10.098

Tables 2-4 present the sample allocation resulting from the solution to Problem 1, along
with the total sample size, sampling fraction f , and the achieved coefficients of variation for
the estimators of all variables across the populations, as well as the pre-specified coefficients
of variation. Note that COBYLA is abbreviated as CBLA in the tables to ensure a better fit
within the table format.

Among all the methods examined, only the Integer Programming Algorithm (IPA) at-
tains the global minimum. Thus, other methods can be compared to IPA’s results to evaluate
deviations from the minimum objective value. Bolded values in the tables indicate the
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global optimum, making it easier to visually compare the results of IPA with those of the
other algorithms.

As shown in the tables, the total sample size n produced by Bethel’s Algorithm (BA) is
never smaller than that obtained by the other methods. The only case where BA matches
another method is in Population 3 for CVj = 5%, where it yields the same total sample size
as COBYLA. The greatest deviations from the global minimum for BA are observed in
the skewed Population 1. Notably, BA does not achieve the global minimum in any of the
analyzed populations.

Tables 2-4 also show that the algorithms GSAA, COBYLA, PSOA, and BRKGA achieve
the global minimum in 88.89%, 44.44%, 55.56%, and 77.78% of the cases, respectively.
In the remaining cases, the differences from the global minimum for these methods are not
substantial. The lowest percentage of global minimum attainment, when GSAA, COBYLA,
PSOA, and BRKGA are considered together, is observed in Population 2. In real Popula-
tion 3, the methods discussed in this paragraph reach the global minimum in nearly all cases.
The proportion of cases in which the global minimum is reached in Population 1 is similar
to that in Population 2. We further observe that even if an algorithm finds the global mini-
mum, the specific solution it yields may differ from that produced by IPA. As an example,
in Population 2 where CVj = 10%, IPA produces the values n1,n2, . . . ,nH as 24, 42, 118, 8,
43, 48, and 22. Although GSAA also reaches the global minimum, it results in a different
allocation: 24, 46, 113, 9, 42, 49, and 22. It is also worth noting that a method capable of
achieving the global minimum for a fixed population and a particular value of CVj may not
consistently reach the global minimum when CVj varies. As an illustration, in Population 2,
PSOA successfully attains the global minimum at CVj = 15%, yet it does not achieve this
outcome when CVj is set to 5% or 10%.

The comparison of artificial Populations 1 and 2 indicates that both stratum and total
sample sizes are sensitive to the distributional characteristics of the study variables. In
Population 2, despite two variables being normally distributed, the presence of two skewed
variables – particularly the one following a heavily skewed Fisher distribution – leads to
a notable increase in the total sample size. Compared to other populations, real Population
3 demonstrates the most pronounced increase in sampling fraction for every pre-specified
coefficient of variation.

Tables 5–7 present the comparative results of six algorithms – IPA, TBA, GSAA,
COBYLA, PSOA, and BRKGA – for the previously considered populations under Prob-
lem 2. The objective in this setting is to minimize the weighted relative variance of the
Horvitz-Thompson estimators of totals across multiple survey variables, given fixed overall
sample sizes corresponding to sampling fractions of 5%, 10%, and 20%. Each table presents
the sample allocations across strata, the corresponding coefficients of variation for each
survey variable, and the total sum of coefficients of variation, ∑CV (t̂(i)y ), which serves as
a summary measure of overall efficiency across all survey variables. The global minimum
of this total is indicated in bold.

In these experiments, IPA is again used as a benchmark, as it achieves the global mini-
mum in every case. Other methods are evaluated against IPA’s performance in terms of both
efficiency and allocation stability.
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Thus, IPA serves as the reference algorithm, consistently achieving the lowest possible
value of ∑CV (t̂(i)y ) across all populations and for each fixed total sample size. Its allocations
are well-balanced and establish the best-case baseline against which all other methods are
compared. BRKGA closely matches IPA in all settings, often reaching the same total CV
values and producing well-balanced and robust allocations. It proves to be a competitive
and stable alternative to IPA. COBYLA performs slightly worse than BRKGA, sometimes
matching IPA and BRKGA in total CV . It provides consistent and efficient allocations,
especially in Populations 1 and 3, making it quite a reliable method in practice. GSAA
delivers results similar to COBYLA and BRKGA in some instances but shows occasional
variability in allocation that slightly affects performance. PSOA performs moderately well
across all populations, with results typically falling slightly above the optimal ∑CV (t̂(i)y )

values. Its allocations are generally balanced, although not as consistently efficient as IPA
or BRKGA. TBA, while effective in select settings, often exhibits unstable behavior, partic-
ularly in Population 2. It tends to heavily over- or under-sample certain strata, which leads
to significantly inflated coefficients of variation for some estimators (e.g. estimator t̂(3)y ).
These outliers frequently result in high total CV values, thereby undermining the method’s
overall reliability.

4. Conclusions

The study finds that the Integer Programming Algorithm (IPA) is the most robust and
accurate method for multivariate optimal allocation in stratified sampling. As an exact ap-
proach, it guarantees the global minimum, directly handles integer constraints, and avoids
rounding errors – crucial for many strata or small-area surveys.

Bethel’s Algorithm (BA), while widely used, consistently underperforms. It never
reaches the global minimum and often yields the largest sample sizes, particularly struggling
in populations with skewed distributions. Despite typically converging, Bethel’s Algorithm
often produces suboptimal results compared to more advanced methods.

Among stochastic approaches, the Biased Random-Key Genetic Algorithm (BRKGA)
proves to be the most competitive. It frequently finds solutions that match or closely ap-
proximate IPA’s and consistently delivers stable, well-balanced allocations. Its efficiency
and adaptability make it a strong practical alternative, especially in scenarios where flexi-
bility or faster approximate solutions are preferred over exact methods. The Generalized
Simulated Annealing Algorithm (GSAA) also performs well, often reaching the global
minimum, although with slightly more variability. COBYLA is reliable, especially with
real-world data in Problem 1, although less consistent in achieving optimality in Problem 2.
Particle Swarm Optimization (PSOA) offers reasonable results but tends to be more variable
and less efficient under tighter precision constraints in certain cases.

The textbook method (TBA) is unstable in variance minimization, often yielding poor
allocation balance and high coefficients of variation in some strata and variables.

The study shows that variable distribution affects allocation: skewed variables require
larger samples in Problem 1 and yield higher variation in Problem 2, stressing the need for
adaptive, precise methods.
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In the real population case (Population 3), under Problem 1, for each predefined pre-
cision level (CVj = 5%,10%, and 15%), the sampling fraction is consistently higher than
in the artificial populations, highlighting the greater complexity and variability inherent in
real-world data. In Problem 2, which aims to minimize overall variance given a fixed total
sample size, the highest coefficients of variation across all survey variables are also observed
in the real data case.

This increase – whether in the sampling fraction under Problem 1 or in the coefficients
of variation under Problem 2 – is primarily driven by the skewed distribution of the study
variables, which necessitates larger samples to meet precision requirements in Problem 1
and leads to higher variances in Problem 2.

This study offers a comparative analysis of exact and approximate optimization meth-
ods. By benchmarking against exact integer programming and testing on diverse real and
synthetic populations, it stands as one of the most comprehensive empirical studies of mul-
tivariate stratified sampling allocation. These results not only affirm the strengths and lim-
itations of different algorithm classes but also provide actionable guidance for practitioners
and survey designers facing real-world complexity in cost and variance trade-offs.
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